По жизни с паяльником. Сайт для радиолюбителей.
     

О САЙТЕ | | НОВОСТИ САЙТА | ПРОЕКТЫ |ССЫЛКИ  

ОСНОВНЫЕ
РАЗДЕЛЫ:

 
Электронные устройства для автомобилей. АВТОМОБИЛЬНАЯ ЭЛЕКТРОНИКА
Телевизионный прием: усилители, антенны... ТЕЛЕВИЗИОННЫЙ ПРИЕМ
Светодинамические устройства СВЕТОДИНАМИЧЕСКИЕ УСТРОЙСТВА
Различные системы и устройства связи. СРЕДСТВА
СВЯЗИ
схемы приборов и устройств для контроля и наблюдения за состоянием здоровья, для людей с потерей слуха и зрения. ЭЛЕКТРОНИКА И ЗДОРОВЬЕ
Электротехника дома и на работе ЭЛЕКТРОТЕХНИКА ДОМА И НА РАБОТЕ
Различные источники питания... ИСТОЧНИКИ
ПИТАНИЯ
За гранью общепринятых понятий... ЭКСПЕРИМЕНТАЛЬНАЯ ЭЛЕКТРОТЕХНИКА
Измерения и измерительные приборы ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
Технология, монтаж, узлы различных устройств КОНСТРУИРОВАНИЕ И РАДИОЛЮБИТЕЛЬСКИЕ ТЕХНОЛОГИИ
Автоматика, телемеханика, цифровая техника АВТОМАТИКА, ТЕЛЕМЕХАНИКА, ЦИФРОВАЯ ТЕХНИКА




 
 

<< В начало статьи <<

ЭЛЕКТОРДВИГАТЕЛИ НОВОГО ТИПА.

ЧТО ЖЕ ИЗОБРЕТЕНО?

Поначалу и сам Литовченко пытался использовать электростатическую индукцию "в лоб". Металлический шарик, бумажная лента, текстолитовая палочка метались туда-сюда между пластинами конденсатора (рис. 3), В одной из ранних статей (С. С. Литовченко, Н. М. Тимченко. "Явление непосредственного преобразования электрической энергии в механическую". Техника средств связи, вып. 7, 1978) описано, что от колебательного движения действительно удалось перейти к вращательному.

Электрический метроном

Р и с. 3. Электрический метроном: между пластинами плоского конденсатора шарик поляризуется, притягивается к ближайшей из них, заряжается и отталкивается, касается другой, перезаряжается и снова отталкивается и т. д.

Но как это могло случиться? - вот в чем вопрос. Казалось, что проскоки обеспечиваются инерцией и упругостью ротора. Но если бы ротор смещался за счет притяжения к статору наведенных зарядов, то, поколебавшись и затратив на трение первичный импульс, он, в конце концов, занял бы устойчивое положение, электрод против электрода, попав в потенциальную яму. Но этого нет, ротор раскручивается, стало быть, действуют какие то другие силы. Вот их то и надо найти.

Еще одну, четвертую, гипотезу можно назвать "разряд как щетка". Наведенный заряд после приближения к электроду статора якобы стекает с ротора, а тот, уже нейтральный, по инерции прокручивается дальше. Следующий, очередной электрод вновь наводит на роторе заряды и притягивает их к себе вместе с ним. Они опять стека ют, ротор проскакивает и т. д.

Бесспорно, столь "умно" ведя себя, разряд действительно сыграет роль электрощетки, дергая ротор в одну сторону. Если бы это было на самом деле, изобретение такого разрядного выпрямителя принесло бы в технике немало пользы. Что-то не видно причин предпочтительной односторонней зарядки-разрядки, да и распределение зарядов на статоре и роторе должно быть строго равномерным.

С другой стороны, полупериодный разрядный выпрямитель кажется правдоподобным. Ведь сочетание напряжений, токов и зазоров в новом двигателе как раз соответствует зоне зажигания самостоятельного разряда в воздухе (так называемая кривая Пашена). Мало того, работа двигателя явно зависит от погоды: давления, влажности, температуры. Это ли не свидетельство “разрядной” причины вращения, подтверждение коммутаторной роли тлеющего разряда?

Но не менее убедительно считать, что разряды просто маскируют истинные причины смещения ротора. Мало того, разрядные токи ухудшают экономичность работы двигателя: в одной из моделей механическая мощность на валу равна 0,16 Вт, а от высоковольтного источника потребляется 4,8 Вт. Несложно видеть, что КПД не превышает 3,4%. Конечно, для массового двигателя эта цифра мизерна. Вот бы убрать разряды с электродов статора! Если ротор будет крутиться по-прежнему, значит, гипотеза “разряд как щетка” отпадает. К тому же КПД неминуемо вырастет!

Пятое предположение появляется на базе следующих данных. Измерения, проделанные Литовченко, показали, что установившиеся обороты двигателя зависят от квадрата напряжения на электродах. Растет напряжение вдвое, обороты возрастают в 4 раза. Мало того, и вращающий момент на валу также пропорционален квадрату напряжения. Вывод очевиден: величины зарядов на статоре и роторе прямо зависят от напряжения. А следовательно, силы вращения зависят от произведения зарядов, то есть причина появления этих сил явно ку-лоновская. Попросту говоря, именно притяжение зарядов на электродах статора и зарядов, как-то наведенных на роторе, обеспечивает раскрутку. Теперь надо бы отыскать причину уменьшения этих сил после того, как луч ротора минует электрод статора. Но причина эта уже известна давно. Заряды на электродах статора вовсе не постоянны во времени, они беспрерывно пульсируют, ибо меняются электрические параметры цепи высокого напряжения!

Каждый луч ротора меняет емкость зазора между соседними электродами. Значит, в цепи статора потечет ток, подзаряжающий электроды. Частота пульсации тока зависит от емкости и индуктивности контура, а также жестко связана с оборотами ротора. Когда фазы электрических и механических колебаний окажутся смещенными на 20—30°, подтягивание ротора станет сильнее торможения и он ускорится.

Если это все верно, то есть напряжение на электродах статора меняется циклично с зазором, то Литовченко изобрел автоколебательную электромеханическую систему, состоящую из ротора и электрической цепи статора. Примерно такой преобразователь изображен на рисунке 4. Источник энергии — выпрямитель или заряженный конденсатор (проверено на опыте). Возбуждаются колебания тока в статоре за счет "наведения зарядов на лучах ротора. Луч ротора втягивается в зазор, емкость статорного контура растет, заряд статорных электродов увеличивается, сила притяжения ротора статором становится больше.

Наконец луч ротора проскакивает электрод статора, силы между ними ослабевают, потому что заряд спадает по величине. Ротор раскручивается все быстрее, пока трение в осях не уравновесит момент вращения. Несложно видеть, что в статорной цепи устанавливаются мало затухающие колебания тока, зависящие в основном от напряжения, числа электродов, инерции ротора и трения в осях. Все это можно измерить экспериментальным путем, примерно этим и заняты заинтересованные специалисты.

Автоколебательный электромеханический преобразователь с самовозбуждением за счет электростатического наведения

Р и с. 4. Автоколебательный электромеханический преобразователь с самовозбуждением за счет электростатического наведения: а) расчетная модель, б) колебания тока в статоре, в) механическое вращение ротора с частотой w, г) фазовая плоскость "ток — заряд конденсатора".

 Общая математическая теория автоколебаний разработана детально, но аналитические решения нелинейных дифференциальных уравнений второго порядка удаются нечасто. Автоколебательные преобразователи применяются весьма широко это анкерные часовые механизмы, радиотехнические ламповые генераторы колебаний. В некоторой степени новый двигатель можно уподобить параметрическому генератору, построенному в 1932 году Л. И. Мандельштамом и Н. Д. Папалекси. И тут и там меняются емкости контура, правда, по разным причинам. Энергия забирается либо от механического привода, либо от высоковольтного источника. Очевидна аналогия нового двигателя и с механизмами, использующими вынужденные колебания, только вместо навязывания заданной частоты электрическим источником она подбирается сама собой вместе с механической частотой вращения ротора.

Любопытно, что в опытах Литовченко столбики масла или подкрашенного воздуха колеблются около электродов, стало быть, в статорной цепи токи пульсируют. Нетрудно заметить, в последних рассуждениях о принципе работы двигателя мы исходили из того, что ротор металлический, звездообразный. Если же ротор диэлектрическая болванка, то картина хотя и становится несколько сложнее, но не теряет своей наглядности. При вращении сплошной ротор сильно деформируется, стало быть, зазоры меняются, а вместе с ними и емкость. Механизм действия остается тем же, но частоты автоколебаний выше, а фазы и амплитуды меньше. Разделять диэлектрический ротор на части нет нужды, он сам вибрирует, деформируется и гнется. Кстати, вот почему при работе двигателя слышны щелчки, скрипы и удары от зацеплений.

Итак, похоже, что изобретен бесколлекторный автоколебательный преобразователь электрической и механической энергии. В нем оригинально меняется емкость колебательного контура, за счет электростатической индукции. Удачно подобраны форма и материал роторов эмпирическим путем выполнено необходимое условие самовозбуждения: ведь жесткий массивный ротор неизбежно остановится, попав в равновесное положение.

Плохо то, что у конструкции низкий КПД, но это, как говорится, дело наживное всегда отыщутся способы повышения экономичности работы. Даже если устранить разряды, потери на трение в осях ротора и электрические потери в статорном контуре останутся. Обороты двигателя довольно стабильны, но давать нагрузку на вал опасно: из-за мягкой нагрузочной характеристики резонансного типа (резонанс напряжений) обороты резко изменяются. Вот почему силовые электродвигатели могут и не получиться, хотя в принципе ничто не мешает ввести быстродействующее регулирование напряжения на статоре. Возможно, что новые преобразователи найдут себе место в слаботочной технике в виде генераторов колебаний, регуляторов, стабилизаторов электрической частоты, задатчиков механических оборотов.

Но не забудьте все это лишь предположения. Поиски продолжаются. Придя домой после работы, Литовченко запирается в ванной комнате, где что-то паяет, вытачивает и клеит. Его засыпали письмами энтузиасты. К исследованиям подключились десятки научных лабораторий. И вот последние новости из Калуги: если на статор подать не постоянное, а переменное напряжение, двигатель работает лучше!

Подача переменного напряжения на электроды статора чрезвычайно расширит круг потребителей нового двигателя, потому что теперь оказываются излишними выпрямители. Упрощение и удешевление и без того недорогой конструкции значительное, а физика процесса от этого вряд ли меняется. Действительно, в промышленности переменным считается напряжение, величина которого пульсирует 50 раз в секунду. Для нас эта частота представляется огромной, но для электронов, создающих электрические токи, она почти незаметна. Поэтому столь медленно меняющиеся электрические поля все равно принято считать статическими, точнее квазистатическими. Вот почему в поисках объяснения принципа работы двигатель Литовченко по-прежнему остается в классе машин электростатических, а лучше квазиэлектростатических.

Может показаться, что вся эта история с калужским изобретением не столь уж важна, чтобы уделять ему много внимания. Но нет, работу Литовченко, скажем прямо, следует считать незаурядной, по крайней мере по трем причинам.

Во-первых, в электротехнике что-то не видно электрических машин столь же простой конструкции. Самые массовые двигатели, на плечах которых поистине держится вся промышленность мира, асинхронные. В них ротор предельно прост, его без особой натяжки можно назвать металлической болванкой. А машинки Литовченко проще! Это ли не событие? Поскольку в них вообще нет никаких обмоток, отпадает надобность в электроизоляции проводников самой трудоемкой работе при изготовлении электродвигателей любого типа.

Второй довод: кулоновские силы неизмеримо больше магнитных, но это преимущество обычно не используется из-за трудностей удержания зарядов на проводниках. Пробой изоляционных промежутков сводит на нет все достоинства электростатических машин. Досадно, но располагаемые нами материалы не позволяют широко использовать силы Кулона, и мы вынуждены обходиться куда меньшими силами Ампера Лоренца.

Отсюда как раз проистекает третий довод в пользу нового электромотора: электротехника неминуемо сместится в сторону пополнения электростатическими конструкциями, радикально изменив свой облик в ближайшие десятилетия. С помощью электростатических полей инженеры уже научились окрашивать, прясть, изготавливать искусственный ворс, улавливать пыль дымовых газов, но это лишь первые весточки грядущий весны под названием "электротехнология".

<< В начало статьи <<

ВЛАДИМИР ОКОЛОТИН,
Техника - молодежи N9, 1982г.

Copyright © vksn.narod.ru, 2001 - 2008.

VSVS

 
Hosted by uCoz